Genetics in PID and practical applications

Helen Braggins
Clinical Nurse Specialist
Chronic Granulomatous Disorder

Jinhua Xu-Bayford
Clinical Nurse Specialist
Gene Therapy and Immunology
Primary immunodeficiency (PID)

• PID disorders are inherited conditions, which means the gene responsible for causing the disorder can be passed from parents to child
• Often caused by single -gene defect (mutation)
• Usually diagnosed during infancy or childhood
• Relatively rare but extremely diverse and serious
• Over 300 mutations have been identified so far
• PID diagnosis is life-changing in both the child affected and their families
Pattern of inheritance

• Autosomal recessive inheritance
• X-linked pattern of inheritance
• Autosomal dominant inheritance
• De Novo mutation:
 • New mutation that occurred and that was not present in either parents
Autosomal recessive inheritance

- An individual, affected child, has inherited two abnormal copies of a gene, one from each parent
- Both parents are carriers of the faulty gene (mutation), they are also called heterozygous
- Autosomal recessive pattern of inheritance means that the condition can be passed on to both boys and girls
- Often no family history
Autosomal recessive inheritance

- Unaffected "Carrier" Father
- Unaffected "Carrier" Mother
- Unaffected 1 in 4 chance
- Unaffected "Carrier" 2 in 4 chance
- Affected 1 in 4 chance
Autosomal recessive inheritance

Summary

• 1 in 4: 25% chance of having an unaffected and non carrier child
• 1 in 4: 25% chance of having an affected child
• 2 in 4 : 50% chance of having a carrier
Autosomal recessive immunodeficiencies

- Several forms of severe combined immunodeficiency, ADA, PNP, RAG, JAK3, IL7R
- Several forms of Chronic granulomatous disease (CGD), p22,p47,p67 and p40
- Cartilage hair hypoplasia (CHH)
- LRBA (lipopolysaccharide responsive beige-like anchor protein)
- Leucocyte adhesion deficiency (LAD)
- Familial forms of haemophagocytic lymphohistiocytosis (HLH)
- Ataxia-Telangiectasia
X-Linked inheritance

• Mutations are in a gene on the X chromosome
• Almost exclusively affect boys only, as males have only one X chromosome
• Females are unaffected carriers (with some exceptions like XCGD)
• Females are unaffected because their second X chromosome carries the normal gene and compensates for the affected gene
• No male-to-male transmission
X-linked inheritance

Unaffected father

Carrier mother

- XY
- XX
- XX
- XY
- XY

carrier daughter
unaffected daughter
unaffected son
affected son
X-linked inheritance

- Carrier female: 1 in 4 or 25% chance
- A non carrier or Normal female: 1 in 4 or 25% chance
- A heathy male 1 in 4 or 25% chance
- An affected boy: 1 in 4 or 25% chance
X-Linked Recessive

Parents

Father Affected Mother Unaffected

Children

Son Unaffected Daughter Carrier Son Unaffected Daughter Carrier

Father Unaffected Mother Carrier

Son Affected Daughter Carrier Son Unaffected Daughter Unaffected

NIH U.S. National Library of Medicine
X-linked immunodeficiencies

- X-CGD
- X-SCID
- Wiskott-Aldrich syndrome (WAS)
- X-linked hyper IgM (CD40 ligand)
- X-linked inhibitor of apoptosis (XIAP) disease
- X-linked lymphoproliferative disease (XLP)
- X-linked agammaglobulinemia (XLA)
Autosomal dominant inheritance

- Rare
- One abnormal gene is sufficient to cause the disorder
- Both boys and girls are equally affected
- Variable penetrance
- Examples:
 - Hyper IgE syndrome due to STAT3 mutation,
 - Autoimmune lymphoproliferative syndrome (ALPS), FAS mutation
Carrier and Prenatal Testing

• Non-invasive testing
 – Ultrasound scanning
 – Free fetal DNA analysis

• Invasive testing
 – Chorionic villus sampling (CVS)
 – Amniocentesis
 – Fetal tissue biopsy e.g blood, skin muscle (these tests are uncommon)
Free fetal DNA analysis

- Non invasive
- Maternal blood can be taken as early as 8-9 weeks of gestation
- Usually performed in conjunction with ultrasound scan
- 99% reliability results
- Not widely available
- Benefit to carrier mothers for an X-linked disorder only
Chorionic villus sampling

- CVS is usually scheduled at 10-13 week of pregnancy, most centre perform this around just over 11 weeks.
- A small sample is taken from the developing placenta tissue which directly arises from the growing foetus.
- Transabdominal CVS,
- Transcervical CVS
- *Results usually are back within three days*
- Very accurate results
- Risk of miscarriage, 0.5%-1%
CVS testing
Amniocentesis

• It’s usually done in second trimester from 15 weeks and beyond
• A sample is taken from amniotic fluid which surrounds the growing foetus which contains foetal cells
• Results are very accurate,
• Amniocentesis also carries a risk of miscarriage, which estimated to be 0.5% to 1%
Amniocentesis testing

- Placenta
- Fetus
- Uterus (womb)
- Cervix
- Amniotic fluid
Prenatal testing

- Fetal Blood sampling
Preimplantation genetic diagnosis (PGD)

- Using IVF technique to create embryos and then be tested for the genetic disorder
- Only unaffected embryos are transferred back to the uterus
- The number of conditions can be tested using PGD in increasing and various from centre to centre
- Each condition needs to have a licence issued by the licensing body, the Human Fertilisation and Embryology Authority (HEFA)
PGD cont’d

• Usually up to 2 embryos are transferred back to the uterus

• *Embryos can also be tested to exclude the genetic disorder and selected to be the tissue typing match for an affected sibling*

• Funding is not available to all couples requesting PGD,

• Highly regulated by the HFEA

• Limited centres offer PGD treatment in the UK
Cord blood collection

- Diagnose at birth on cord blood
- Cord bloods collection and storage
Comparison of overall outcomes

Probands
n=45

- Death before HSCT
 n=14
 31% mortality

- Progress to HSCT
 n=31

 - Deaths after HSCT
 n=13
 41%

Overall mortality/survival:
27/45 (60%) (40%)

Siblings
n=55

- Death before HSCT
 n=1
 1.8% mortality

- Progress to HSCT/GT
 n=54

 - Deaths after HSCT/GT
 n=3
 5.5%

Overall mortality/survival:
4/55 (7.2%) (92.8%)

Any Questions?